
Analog Descriptor Add-ons
Remembering special tidbits

Tue, Feb 25, 1997

When it is necessary to keep special information in the local database that relates to
only a few channels, a means of storing it would be desirable. This note explores
possibilities for this.

Using the name table
The name table is designed to provide a quick way to search for info according

to a unique key. It has been used so far in name searching, for both 6-character
names used locally in the Classic protocol and for 16-character names used in the D0
detector control system. The scheme depends upon the use of unique keys. Multiple
types of keys may be used, because in each case a type code is specified along with
the name. The "name," or whatever unique key is used, must reside within a system
table of some kind. The data that is stored in the "name table" is only the entry
number of the system table that is referenced by the type code. For 6-character
names, for example, the data that is stored in the name table entry is the channel#,
along with a pointer to the name as it resides in a field of the analog descriptor table.

In this case, the "name" might be a channel#, as those are unique within a
system by definition. A system table would have to exist to hold the information that
is special for a few channels. The data word in the name table entry would be the
entry number of that new system table. The pointer would have to point to the
channel# that must be stored in that entry. So, given a channel#, one can quickly
come up with the corresponding entry# in the new system table, if there is one.

A new listype# could be defined, along with new read routines and set routines,
so that read/write access to the special information can be supported. Some means of
deleting the extra info, and thus opening up a spare slot in the new table, must also be
provided.

Reference from descriptor
The spare byte in the analog descriptor could be used to index into an up-to-

256-entry table that could contain the extra info. It is quick to find the special info,
given a channel#, but one is limited to 256 entries.

Increase size of descriptor
Although this is the easiest path, it requires more memory than may be

convenient to relinquish. The 162 boards have only 512K of non-volatile memory. For
1024 channels, we use 64K of this memory for the current descriptor size. With 192K
of downloaded program memory, only 256K remains. If the #channels is limited to
1024, then we could double the size of a descriptor entry with no trouble. Not having
the special D0 tables saves another 64K. Not expanding the ADATA and BDESC tables
saves another 32K. 64K is needed for myriad other non-volatile tables.

Analog Descriptor Add-ons p 2

In summary, limiting support to 1K channels and 1K bits, with 128
bytes/analog descriptor table entry, we have:

Download program area 192K
ADESC 128K
ADATA 16K
BDESC 16K
Miscellaneous 64K
spare 96K
Total 512K

One could double the size of an ADATA and/or BDESC entry and still have 64K
available.

For the case of 133-based systems, which are all those in Linac, the situation
is different, although there is 1024K of non-volatile memory available. With the
ADESC table set at 150000, and with 2K channels of 128 bytes each, we would extend
the ADESC table to 190000, where the binary tables begin.

New CINFO system table
Another implementation of channel-related extra information uses another

system table, #25. Each entry contains the channel# key. An entry could be variable
length and of different types. Here is a proposed layout:

infoSz infoTy infoChan infoData[1]

infoData[2] infoData[3]

Each entry is composed of a size byte, a type byte, a channel# word, and arbitrary
information. An entry's size must be a multiple of 8 bytes. The example above shows
an entry with a size of 16 bytes.

As an example of the use of such an auxiliary table, consider the need for information
about channels that have swift digitizer support in Booster IRMs. Up to 8 channels
can have such support, but which channels they are is arbitrary. The FTPMAN

support must, given a channel#, determine whether or not swift digitizer support
exists for that channel. The CINFO scheme can do this. A new library routine can
assist in searching this small table.

Function CINFOEntry(typ, chan: Integer): CINFOPtr;

In the case that there is no CINFO entry available for the given channel, NIL is
returned. Let the type parameter be 1 for swift digitizer information. When FTPMAN

gets a request for swift digitizer data for a given channel, this routine can answer the

Analog Descriptor Add-ons p 3

question of whether that channel is connected to a swift digitizer channel. For
example, the CINFO entry might have this form:

0 8 0 1 chan# ptr to Swift board + ch#0-7

The ptr to the swift digitizer board gives access to the registers for controlling the
digitizer. The low 3 bits can contain which of the 8 possible digitizer channels is used.
To find the memory occupied by the resulting digitized waveform, one must read a
register from the IPIC chip, whose address is fixed, on the 162 board. The register that
must be read depends upon which of the four IP board sockets is used. The base
addresses of the IP board sockets on the 162 cpu board are FFF58x00, where x
ranges from 0–3 for board sockets a, b, c, d. So the board socket index can be obtained
from the base address that is contained in the table, such as FFF5820y for board
socket 2, or b, with y in the range 0–7 to signify which digitizer channel is used.

In case an separate IP carrier board is used, and the IPIC chip is not used, more
information is needed to find the memory address of the waveform. To cover this case,
the size should be larger than 8 bytes. Here is a possible layout:

1 0 0 1 chan# ptr to Swift board + ch#0-7

ptr to swift memory spare ptr

Here is a routine that can return the ptr to a swift digitizer waveform memory:

Function SwiftMem(infoP: CINFOPtr): SwiftMPtr;

Given a pointer to the CINFO table entry that was returned by CINFOEntry,
SwiftMem uses the previous logic to find the base address for the given waveform's
memory. It checks for both the short and long cases. It returns NIL if an error.

One can also, in a similar way, design a scheme to help with quick digitizer support.

